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@ Introduction: The need for methods to assess generalizability
© Motivating example: PBIS
e Examining generalizability in MD PBIS study

@ Next steps and conclusions
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Goal of this work: Moving towards dissemination

@ Increased emphasis on evidence-based practices
o Often get wide implementation after appearing on various lists

e e.g., Cochrane and Campbell Collaborations, What Works
Clearinghouse, NREPP

@ Focus in randomized experiments on internal validity
@ But how do we know the intervention will be effective beyond the
original study sample (external validity)?

@ Main idea: Make individuals in the trials look as similar to the
population of interest as possible
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Previous work on external validity

o Causal generalizability (Shadish, Cook, & Campbell, 2002, Cook
2007)
e Factors that limit internal and external validity
e Primarily conceptual, raising issues to be considered
e Decomposing bias in treatment effect estimates (Imai, King, &
Stuart, 2008)
o Bias due to non-random sample selection
e Bias due to non-random treatment assignment
e e.g., experiments have smaller bias due to non-random treatment
assignment but may have larger sample selection bias
o Idea here: Use methods developed to deal with non-random treatment
assignment to deal with non-random sample selection

@ Simple metrics to assess generalizability (Glasgow et al., 2006)

o RE-AIM framework
e Summary indices assessing reach, effectiveness
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Current approaches to facilitate generalization

In design:
@ Random sampling from population: Great, but rarely done
o Just a few examples: Upward Bound, Job Corps
@ Purposive sampling: Typical instances, heterogeneous instances
o Ever done?
@ Practical clinical trials (Tunis et al., 2003; Glasgow et al., 2006)
e Generally very expensive, large-scale
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In analysis:
@ Post-stratification
o Averages subgroup effects using population proportions

e Doesn't require individual-level data
e But very restrictive in terms of the number of covariates that can be

used
@ Research synthesis approaches (e.g., meta-analysis, cross-design
synthesis, response surface modeling) to combine results across

studies
e Requires multiple studies on the same topic—rare in fields such as

education, policy
A lot of discussion primarily conceptual, especially with respect to single

studies
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© Motivating example: PBIS
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Positive Behavioral Interventions and Supports (PBIS)

@ School-wide behavior improvement program (Lewis & Sugai, 1999)
o Implemented in over 5,000 schools across 40 states (www.pbis.org)
o President Obama previously had introduced Senate legislation to
provide federal funding for PBIS
@ PBIS helps schools create systems (discipline, reinforcement) and
procedures (office referral, reinforcement) that promote positive
student and teacher behaviors

@ Very few randomized trials of PBIS, and even less known about broad
effectiveness

@ Motivating question: What would the effects of PBIS be if
implemented across the state of Maryland?
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Data on PBIS in MD

@ Randomized trial in 37 MD elementary schools
@ Data from state Department of Education on all elementary schools
in MD
@ Both datasets have:
e Demographics, test scores, suspensions, teacher characteristics, school
funding
o Covariates measured in 2002 (pre-trial)
e Demographics, school funding, achievement test scores
@ Outcomes measured 2004-2006

o School average achievement test scores, % meeting NCLB proficiency
levels
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Outline

9 Examining generalizability in MD PBIS study
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How similar are the trial schools to those across MD?

Trial Statewide p-value
Enrollment 485 494 0.73
Attendance (%) 95.3 95.3 0.75
Limited English (%) 2.1 4.2 0.00
Free meals 390.7 35.6 0.25

County wealth per student ~ $250,000  $270,000 0.04
County expend. per student  $7,500 $8,000 0.00
Achievement Test Scores (% Advanced or Proficient)

Grade 3 Math 27.4 32.3 0.07
Grade 3 Reading 32.9 349 0.50
Grade 5 Math 44.6 51.8 0.04
Grade 5 Reading 54.2 53.9 0.92
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Propensity scores as summary of differences

@ Quite a few significant differences on individual variables
@ Hard to combine these into one measure
@ Use ideas behind propensity scores to do so
o Generally used in non-experimental studies to identify/reduce
extrapolation
o Used to ensure that groups being compared are similar
e In our case the “treatment” =being in the randomized trial
o Fit logistic regression predicting membership in trial given
characteristics

o Propensity scores = predicted probabilities from that model (p;)
e Done separately for treated and control groups

@ Rosenbaum & Rubin (1983), Stuart & Rubin (2007)
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Propensity scores across state and in trial

Propensity scores in control schools and across the state

} “ N|
o - 4
T T T T
0.0

0.1 0.2 0.3 0.4 0.5

20 30
|

10

Propensity scores in treated schools and across the state

_ \\\
_ \.
\_\
—T T T T T

0.00 0.05 0.10 0.15 0.20 0.25

10 15 20

5
|

0
|

Elizabeth Stuart (JHSPH) Generalizability January 29, 2009



@ Overall difference in each group: 0.7 standard deviations
o Quite large! (Rubin, 2004)

@ Not many differences on individual characteristics, but they do
combine to create differences in the propensity score
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But can we make the trial schools look like the state?

@ Main idea: weight schools in trial to look like schools across the state
o Inverse probability of treatment weighting (Cole & Hernan, 2008)
@ Each school in trial receives weight l,
@ Treated like a sampling weight, but estimated rather than known
e Then take weighted average of outcomes among trial schools
o Weights both groups (treated and control) up to full population (the
state as a whole)
@ Diagnostics:
e How extreme are the weights?
e How similar are the weighted control group outcomes to those of the
state as a whole?
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What do the weights look like?

Weights for treated schools
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Do the weighted control schools look like the state?
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Outline

@ Next steps and conclusions
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Next steps: Developing these methods

Use idea to estimate effect for schools across state

e Compare post-stratification, propensity score post-stratification,
weighting
e Develop diagnostics, including measure of extrapolation

@ Simulations ongoing to investigate performance of methods
@ Extensions to utilize multiple trials at once

@ Determine guidance for when this generalization is possible
o

How should studies be designed to facilitate generalizability?
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Next steps: Comparison with other approaches

@ In reality, some schools in state implementing PBIS on their own
o Calculate effect using observational methods with only state data
o Calculate effect by bridging randomized and observational studies (e.g.,
research synthesis, confidence profile method)
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@ In some cases only have one experiment, but also have information on

the population
@ Goal of this work: Develop methods to use that data to determine
whether the experimental results can generalize
o Give researchers quantitative way to investigate generalizability
o Take advantage of the good features of both datasets: internal validity
of experiment and representativeness of population data
o Useful for determining whether broad implementation makes sense
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