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What are the Data?

• Complete (intended) data: Y = (Yobs, Ymis), where

Yobs = observed data

Ymis = missing data

– Missing data assumed to have true underlying values
Ex: Missing vital lung capacity after death

– Doesn’t include missing potential outcomes

• R = reponse indicators

• Observed data: (Yobs, R)



Missing Data Patterns
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Missing Data Patterns

Special Patterns

Univariate Missing

?

“Unit Nonresponse”

?

Monotone Missing Data
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Example: IMPACT Multi-Centre Study

• Example from Tang et al. (2005)

• Multi-centre RCT to study effectiveness of a disease management
programme for late-life depression

• 2 groups: usual care group and IMPACT group

• IMPACT group given access for 12 months to a depression care manager

• Total sample size of 1801

• Outcome measures taken at 3, 6, and 12 months

• Rich collection of covariates taken at baseline and a followup visits



Dropout in IMPACT RCT
A COMPARISON OF IMPUTATION METHODS 2113

Table I. Unit response pattern over waves∗.

Baseline Month-3 Month-6 Month-12 Overall Usual care Intervention

X X X X 1433 688 745
X X X M 91 52 39
X X M X 22 18 4
X X M M 78 41 37
X M X X 31 19 12
X M X M 15 10 5
X M M X 8 4 4
X M M M 123 63 60

∗X: responded; M: missing the wave (missing, drop-out or dead).

variables were collected at baseline and at each follow-up point. Most variables had item
level missingness rates of less than 2 per cent. The unit non-response rates for the 3-, 6-, and
12-month follow-ups were 9.8, 12.8, and 17.1 per cent, respectively.
This paper utilizes data from the baseline and the 3-, 6-, and 12-month follow-up assess-

ments. Rates of non-response in the control group were higher than in the intervention group:
10.1 vs 8.1 per cent at 3 months, 12.5 vs 10 per cent at 6 months, and 15.6 vs 11.9 per
cent at 12 months excluding individuals who died during the study, with the di!erence at 12
months being statistically signi"cant (!2 = 5:16, p=0:02). Table I shows the distribution of
unit response patterns over 12 months. There were 1433 participants (745 in the interven-
tion group and 688 in the usual care group) who completed all three follow-up assessments.
Some people missed one or two follow-up assessments and then provided information at a
later follow-up, while others remained missing after a certain wave prior to the 12-month
assessment.
To investigate whether unit non-response behaviour di!ered between the intervention and

control groups, we tested bivariate associations between an indicator for responding at a given
follow-up time point (coded 1 if response and 0 if non-response) and various baseline de-
mographic, clinical characteristics and depression treatment from previous waves. We found
that there were more covariates signi"cantly associated with response status in the inter-
vention group than in the control group. For example, the non-response rates signi"cantly
di!ered across the eight participating organizations in the intervention group but not in the
control group. This suggests that there might have been di!erences across sites in the way
the intervention was implemented that a!ected response rates. These di!erences in the imple-
mentation of the intervention were identi"ed even though the same tracking and follow-up
procedures were applied to intervention and usual care subjects. In the intervention group,
non-respondents had signi"cantly lower rates of prior depression treatment use than respon-
dents at each follow-up. This di!erence, which was not seen in the usual care group, might
re#ect that some intervention-group patients who were actively encouraged to try treatments
such as antidepressants but who did not wish to try such treatments were less likely to con-
tinue in the study and to participate in follow-up surveys. Response status was signi"cantly
associated with prior depression measures. At 12 months, non-respondents in the intervention
group had more severe depression as measured by prior-wave Symptom Checklist (SCL-20)
depression scores [20] that served as a primary study outcome, but this was not the case

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2111–2128



Tale of Two Likelihoods

• Full likelihood – involves missing-data process

Lfull(θ, φ | Yobs, R) ∝
∫

f(Yobs, Ymis | θ)f(R | Yobs, Ymis, φ)dYmis

• Partial likelihood – ignores the missing-data process

Lpartial(θ | Yobs) ∝
∫

f(Yobs, Ymis | θ)dYmis

• When can you safely use the much simpler partial likelihood?



Assumptions about Missingness

Assumptions about f(R | Yobs, Ymis, φ):

1. Missing Completely at Random (MCAR) – MD process does not
depend on observed or missing values

f(R | Yobs, Ymis, φ) = f(R | φ)

2. Missing at Random (MAR) – MD process does not depend on missing
values

f(R | Yobs, Ymis, φ) = f(R | Yobs, φ)

3. Not Missing at Random (NMAR) – MD process can depend on
observed and missing values

f(R | Yobs, Ymis, φ) = f(R | Yobs, Ymis, φ)



Ignorability

When can we ignore the missing-data process when making inferences?

• Sufficient conditions for ignorability of the MD process:

1. MD process is MAR

2. Parameters of the MD process (φ) and complete-data model (θ) are
distinct

• If MAR holds but not parameter distinctness, ML based on Lpartial is valid
but not fully efficient

• MAR is the key condition for MD ignorability

– Richer the observed data Yobs, the more plausible the MAR assumption

– MAR is nice ⇒ don’t have to model the MD process

• NMAR assumption is often more plausible, but very difficult to justify
specific choices because there is no evidence in the data against MAR



Handling Missing Data

• Available/Complete Cases

– Naive: simple but often wrong

• Summary Measures

– Common in longitudinal studies

• Last Value Carried Forward

– Common in longitudinal studies

• Single Imputation

– Fill in missing values

• Multiple Imputation

– Principled

• Bayesian/Likelihood Based

– Principled



Complete Case Analysis

Discard Incomplete Cases

Good : • Easy

• Common sample base for comparisons

Bad: • Loss of information in incomplete cases

– Increased variance (smaller n)

– Bias (systematic differences between resp. and nonresp.)
∗ Try to adjust with weights



Available-Case Analysis

Use: • Available cases for each mean, variance

• Available pairs for correlation or covariance
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Available Case Analysis–Continued

Good: • Easy (but inference for some statistics non-trivial, e.g., slopes)

• Makes apparently better use of available data

Bad: • Correlations outside (-1,1)

• Correlation matrix not positive definite (slopes??)

• Can be even worse than complete cases
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Example: Bivariate Monotone Missing Data

?

X X

mean=XXµ

1 2

211

^ _

E(X1) = µ1 E(X2) = µ2

V ar(X1) = V ar(X2) = σ2 Corr(X1, X2) = ρ

For inference about ∆ = µ2 − µ1:

Complete Cases: X̄2 − X̄1 (CC)

Available Cases: X̄2 − µ̂1 (AC)



Example: Bivariate Monotone Missing Data

If Missingness of X2 is Independent of X1 and X2

(Missing Completely at Random)

Then for ∆

• CC and AC unbiased

• Var(CC) > Var(AC) if ρ < 1
2

Var(CC) < Var(AC) if ρ > 1
2



Example: Bivariate Monotone Missing Data

If Missingness of X2 Depends on X1

(Missing at Random (MAR))

• CC and AC biased

• Bias (CC) < Bias (AC) (usually)



Linear Regression with Missing Predictor Variables

Parameter of interest: slope (β) of the regression of Y on X
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1. Impute X̄obs for all missing X’s (can impute all 0’s or any other value)

2. Fit : Y = β0 + β1I + β2X + ε

Results: β̂2 = β̂CC , β̂1 = n
nobs

(Ȳmis − Ȳ ), β̂0 = β̂CC

β̂2 unbiased for β under MCAR, biased under MAR
(Under MCAR, MLE more efficient)



Linear Regression with Missing Response Variable

Parameter of interest: slope (β) of the regression of Y on X
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β̂2 biased for β even under MCAR!



Imputation (single)

Impute Means

Unconditional

?

X      X1

2

But s < 2
2

σ !
2
2

2

X



Impute Means (continued)

Conditional on Observed Values in Case

?

X      X1

1

2 Regress X2 on X1 from complete
cases
Impute predictions X̂i2 = E(Xi2|Xi1)

But s2
2·1 < σ2

2·1!
(residual variance of X2 given X1)



Notes on Mean Imputation

• Marginal distributions and associations distorted (no residual variance)

• Standard errors from filled-in data too small

– no residual variance

– n actually smaller

– uncertainty of prediction

• Conditional better than unconditional, which is often worse than doing
nothing (AC, CC)



Impute Values (not means) from a Distribution

Example 1

?

Regress X  on X2 1

X X21

Impute: E(Xi2|xi1) + ri

where
ri = residual from regression (empirical)

or

ri ∼ N(0, s2
2·1), s2

2·1 = residual variance



Impute Values (not means) from a Distribution
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Single Proper Imputation: Scalar Estimand

30% missing information is large in a typical study
Does single proper imputation work in this case?

Confidence Coverages for Scalar Estimand
(e.g., mean, regression coef., correlation coef.,

cell proportion, factor loading, etc.)

nominal 90% 95% 99%

actual 77% 85% 94%

Can lead to wrong conclusions about effects!
overly confident of results – underestimate risks



Single Proper Imputation: Multivariate Estimand

Significance Levels for Testing Ten Component Null Hypothesis
(e.g., 10 component regression coefficient,

10 component interaction in a contingency table)

nominal 1% 5% 10%

actual 25% 45% 57%

In fact −→100% as number of components increase

Leads to bad conclusions about data!

Almost certainly reject adequate simple models
in favor of overly complex models



Notes on Imputing Values from a Distribution

• Less efficient for estimates of means

• Better than mean imputation for distributions and associations

• Standard errors from filled-in data are still too small

– n smaller

– uncertainty of estimation

Multiple Imputation can fix these!



Summary of Some Naive Methods

• Methods can be useful if the amount of missing data is small
(although good definition of small is difficult)

• Performance is unreliable

• Methods are ad hoc, and may need ad hoc adjustments

• Tests and confidence intervals are generally wrong (even asymptotically)

• Intuition can lead you astray – need principles



Principled Attacks: Bivariate Monotone Missing Data

?

X X1 2

n
n

obs

• Maximum likelihood (assuming normality)

– Factored likelihoods

– EM

• Multiple imputation

– Introduction to general approaches using this technique



Maximum Likelihood

• Model for (X1, X2) governed by parameters

(X1, X2) ∼ N2

[µ1, µ2],

σ11 σ12

σ12 σ22


• Likelihood function of parameter, θ, given observed values (under MAR)

f(Xobs | θ) =
nobs∏
i=1

N2(Xi1, Xi2 | θ)
n∏

i=nobs+1

N1(Xi1 | µ1, σ11)



Maximum Likelihood

• Estimate θ by maximizing the likelihood (factored like. for special patterns):

f(Xobs|θ) =
n∏

i=1

N1(Xi1|µ1, σ11)︸ ︷︷ ︸
nobs∏
i=1

N1(Xi2|α2·1 + β2·1Xi1, σ22·1)︸ ︷︷ ︸
distinct functions of θ

µ̂1, σ̂11

mean, variance
available cases

α̂2·1, β̂2·1, σ̂22·1

least squares
regression estimates
complete cases

• Transform to find MLE’s of µ2, σ12, σ22:

µ̂2 = X̄2 + β̂2·1(µ̂1 − X̄1)

σ̂12 = s12(σ̂11/s11)

σ̂22 = s22 + β̂2
2·1(σ̂11 − s11)

ρ̂ = σ̂12/
√

σ̂11σ̂22



Advantages of Maximum Likelihood

Why are these estimates preferable?

• All estimates are in the parameter space

• They are consistent and efficient if underlying model is correct
E.g., µ̂2 − µ̂1 unbiased with smaller variance than X̄2 − X̄1 or X̄2 − µ̂1

• This holds true under wider class of models
E.g., missingness can be MAR (missing at random) rather than more
restrictive MCAR – missingness can depend on Xi1 values

• SEs and tests based on large sample theory are available and valid
⇒ valid p-values and confidence intervals

• Provides guidance in harder problems without obvious ad hoc fixes

• Evidence suggests following principles works well even when model is not
entirely correct



Multiple Imputation

• Impute M ≥ 2 values for each missing value, typically, M = 5

• Retains advantages of single imp. and attains large sample optimality of ML
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Multiple Imputation Overview

• Generate M independent imputations of the missing data under an
imputation model

• Analyze each of the M completed data sets by standard complete-data
methods

• Combine to get one answer across imputations

• Especially useful for database construction
(valuable data – many analyses – many potential users)



Creating Imputations in Bivariate Monotone Examples

?

1 M. . . .

1 M

. . . .

...

Example 1:

Let X̂i2 = α̂2·1 + β̂2·1Xi1 i = nobs + 1, . . . , n

Then impute for i = nobs + 1, . . . , n:

X̃
(`)
i2 = X̂i2 + r

(`)
i ` = 1, . . . ,M

where r
(`)
i are residuals drawn from complete case regressions



Creating Imputations in Bivariate Monotone Examples

Example 2: (better method)

Important adjustments when % missing info. ↑

X̃
(`)
i2 = α̂

(`)
2·1 + β̂

(`)
2·1Xi1 + r

(`)
i

(reflect sampling variability in L.S. regression)

Under normality

draw σ̂
(`)
22·1 using χ2

nobs−2

draw β̂
(`)
2·1 ∼ N(β̂2·1, σ̂

(`)
22·1/(nobss

2
1))

draw α̂
(`)
2·1 ∼ N(X̄2 − β̂

(`)
2·1X̄1, σ̂

(`)
22·1/nobs)



Estimation with a Multiply-Imputed Data Set

Complete-data statistics for µ2: Average of all n Xi2 observations = X̄2

Associated standard error = s2/
√

n

M values across M completed data sets: X̄
(`)
2 , SE(`), ` = 1, . . . ,M

MI Estimate:
µ̂∗2 = ave`

[
X̄

(`)
2

]
MI Standard Error:

SE∗ =
[
U + (1 + 1

M )B
]1/2

Within Imputation Var. U = ave`

[
SE(`)2

]
Between Imputation Var. B = var`

[
X̄

(`)
2

]



Remarks about the Example and MI

• In the bivariate monotone example, as M −→∞
– µ̂∗2 −→ µ̂2, the MLE

– SE∗ −→ Var(µ̂2 − µ2)1/2

• M small (2 or 3) gives valid inferences for modest fractions of missing data
(M = 5,10 most common and acceptable)

• Creating a multiply-imputed data set in general is difficult,
although no more difficult than creating a singly-imputed data set
from which consistent estimation is possible

• Imputations should be generated to reflect the uncertainty about the missing
data (including uncertainty about the unknown model parameters)



Key Ideas of Multiple Imputation

MI doesn’t create information, but represents observed information so
that it can be extracted using standard complete-data methods of
analysis

• Each missing value is replaced by M possible values = multiple imputations

• These represent distribution given observed data

• Multiple imputations “create” M completed data sets

• Each completed data set analyzed by standard complete-data software

• Outputs from M complete-data analyses combined to create final inference
(e.g., average M regression coefficients)

• M = 5 is sufficient in most applications



MI vs. Maximum Likelihood

• Flexiblity: Incorporation of auxiliary information

• Consistency: Same imputations for a variety of analyses

• Robustness: Model misspecification

• Sensitivity: Compare imputation models

• MI asymptotically equivalent to ML under the same model, but
subasymptotically preferable (expectation vs. modal estimation)

• MI separates the tasks of handling the missing data and analyzing the
complete(d) data

– With MI have to worry about the congeniality of the imputation and
analysis models



Multiple Imputation Theory: Bayesian

• Complete data Y = (Yobs, Ymis)

• Quantity of interest is Q

P (Q | Yobs) =
∫

P (Q | Y )︸ ︷︷ ︸ P (Ymis | Yobs︸ ︷︷ ︸)dYmis

correct
posterior
distn of Q

complete data
posterior distn
of Q

posterior predictive distn
of missing values
simulated by
multiple imputations

E(Q | Yobs) = E [E(Q | Ycom) | Yobs] ≈ Ave (Q̂)

V (Q | Yobs) = E [V (Q | Ycom) | Yobs] + V [E(Q | Ycom) | Yobs]

≈ Ave (U) +
m + 1

m
V (Q̂)



“Contest” Example

Objectives of the simulation study

• Compare fully Bayesian approach to the regression based method that
ignores the uncertainty about the parameter estimates

• Investigate whether or not “expenditures” should be used in the “income”
imputation especially when an econometric analysis involves regressing
income on expenditure



Simulation Setup

• Population: complete reporters over several years

• 200 independent samples drawn each size 500 (approximately)

• An ignorable monotone missing data mechanism was imposed on each
sample by BLS staff

• MI team was unaware of the exact nature of the mechanism

• All the variables used in the mechanism as well as some other variables were
provided to the contractor without noting which were which

• 200 simulated data sets with missing values were shipped to the MI team

• M = 5 imputations created for each sample and sent to BLS for evaluation



Variables

• Variables with missing values

– (R) ethnic: race/ethnicity variable with 4 categories
1=black 2=Hispanic 3=white 4=other

– (Y ) lincome: log(income+1)

• Covariates with no missing values

– X=(mortgag1, mortgag2, earnrel2, earnrel3, earnrel4, earnrel5, noearnr,

occup2, occup3, occup4, occup5, occup6, educ2, educ3, educ4, family2, family3,

family4, family5, perslt18, famsize, region2, region3, region4, urban1, homeon1,

incweekq, inchrsq, ageref)

– E=(lzalbev, lzapprl, lzcarnw, lzcarus, lzeduct, lzentan, lzfooda, lzfoodh,

lzgasmo, lzhltin, lzhousf, lzhouso, lzmedsr, lzmiscx, lzowndw, lzpercr, lzperln,

lzpredg, lzpubtr, lzreadn, lzrentd, lztobac, lztrans, lztrntp, lzutils, lzothld)



Four Kinds of Imputations Studied

1. (FB, include E): draws from the joint predictive distribution of (R, Y ) given
(X, E) (this model supported by MI theory)

• [R, Y |X, E] = [R|X, E][Y |R, X, E]

• [R|X, E] ∼ Multinomial Logit

• [Y |R, X, E] Normal linear regression model

• Draw parameters from their posterior distribution and then draw multiple

values (imputations) from the multinomial logit or normal linear regression

model conditional on the drawn value of the parameters

2. (FB, exclude E): same as above except that E is not included as a covariate
in the model for imputation

3. (Fixed Parameter, include E): here the approach is similar to 1 except that
the parameters are not perturbed but are fixed at their maximum likelihood
estimates

4. (Fixed Parameter, exclude E): same as (3) except that E is not included in
the model for imputation



Complete-Data Analysis

log(INCOME + 1) = αo + α1 × log(TEXP + 1) +
∑

j

αjXj

where
TEXP= Total Expenditure

X1=Age of the reference person

X2= 1 if the reference person has completed High School but did not go to college, and 0

otherwise

X3=1 if the reference person has attended some college but did not finish college, and 0

otherwise

X4=1 if the reference person completed college, and 0 otherwise

X2, X3 and X4 represent education status with those with less than high school education

serving as the reference category

X5=1 if the reference person is Black, and 0 otherwise

X6=1 if the reference person is Hispanic, and 0 otherwise

X7=1 if the reference person is “Other” ,and 0 otherwise

X5, X6 and X7 represent ethnicity with White forming the reference category

Primary parameter of interest: α1



Coverage Properties

• For each method computed the proportion of 200 nominal confidence
intervals containing the true value of α1

METHOD 90% NOMINAL 95% NOMINAL

FB,INCLUDE E 91.5 96.0

FB, EXCLUDE E 82.5 88.0

FIXED MLE, INCLUDE E 89.0 92.0

FIXED MLE, EXCLUDE E 80.0 86.5

• Paired t-test results comparing certain imputation methods

[FB, include E] VS [FIXED, include E]: t-statistic=8.841

[FB, include E] VS [FB, exclude E]: t-statistic=35.360



“Don’t Know” Survey Responses: the Slovenian Plebiscite

(Rubin, Stern, Vehovar JASA 1995)

• The Republic of Slovenia separated from Yugoslavia on Oct. 8, 1991

• One year before, Slovenians voted on independence through a plebiscite

• 88.5% of eligible voters voted in favor of independence

• To predict the results of the plebiscite, the Slovenian government inserted
questions into the Slovenian Public Opinion (SPO) Survey that was
conducted 4 weeks prior to the plebiscite



Slovenian Public Opinion Survey

• Questions on many aspects of Slovenian life, e.g. education, health, etc.

• Conducted 1-2 times each year for the past 30 years

• Face-to-face survey of approx. 2,000 voting-age Slovenians

• The independence questions were:

1. Are you in favor of Slovenian independence?

2. Are you in favor of Slovenia’s secession from Yugoslavia?

3. Will you attend the plebiscite?

Possible responses were YES, NO, and Don’t Know (DK)
( in the plebiscite non-voters are treated as NO votes)



Independence

Secession Attendance Yes No DK

Yes 1,191 8 21
Yes No 8 0 4

DK 107 3 9

Yes 158 68 29
No No 7 14 3

DK 18 43 31

Yes 90 2 109
DK No 1 2 25

DK 19 8 96

n=2,074

θ = proportion voting Yes and planning to attend

Simple estimates of θ:

method θ̂ n

Complete Cases .928 1,454

Available Cases .929 1,549

Conservative (DK = No) .694 2,074



Thinking more carefully about the DK responses

• In some surveys DK is a valid response

• But in the plebiscite, everyone votes either Yes or No
(either by voting in person or by staying home effectively voting No)

• We can treat DK’s as missing data

We can view our data as partially cross classified:
(looking at questions 1 and 3)

1,439

   16 16

78

136

159

32

144 54

DK

DK

Yes 

Yes 

No 

No 

Independence

Attend



Comparing Results

Assuming MAR we can model the 4 cells of interest as multinomial:

(i.e. assuming the probability of the occurrence of DK responses can depend on
the observed answers to other questions, but given these, it does not depend on
the missing value itself)

Estimate of θ using Multiple Imputation (or EM): θ̂ = .883

Can also assume nonignorable nonresponse:
(i.e. can assume the probability of an observation’s missingness depends on the
unobserved value)

Plausible since eventual No voters might be more likely to say DK to avoid
giving an unpopular answer.

Can use loglinear models to fit a plausible nonignorable model: θ̂ = .782
(these models don’t fit the data well)



Summary of Slovenian Plebiscite Data

• Need to treat DK’s as missing data (DK’s “hide” a Yes or No)

• Analyzing the data under the MAR assumption provides accurate predictions



Some MI References

Web

http://www.multiple-imputation.com

Books

Little, R. J. A. and Rubin, D. B. (2002), Statistical Analysis With Missing Data, New York: Wiley,

2nd edn.

Rubin, D. B. (1987), Multiple Imputation for Nonresponse in Surveys, New York: Wiley.

Schafer, J. L. (1997), Analysis of Incomplete Multivariate Data, New York: Chapman and Hall.




