
 

  

 
 
 
 

 

Cluster Unit Randomized Trials 

1. Learning Objectives 
After reviewing this chapter readers should be able to: 

 

• Recognize when cluster randomization should be preferred to individual 

randomization; 

• Understand the statistical implications of cluster randomization; 

• Understand the advantages and disadvantages of different cluster randomization 

designs; 

• Understand the basic principles of sample size estimation for cluster randomization 

designs; 

• Be able to select an appropriate method of statistical analysis; and 

• Be able to adequately report the results of a cluster randomization trial. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

2. Introduction 

Cluster randomization trials (CRTs) are experimental studies in which intact social units 

(clusters), such as families, schools or even entire cities, rather than independent individuals, 

are randomly allocated to intervention groups. The purpose of this chapter is to provide an 

introduction to the basic principles that apply to the design and analysis of CRTs, using 

examples throughout to illustrate the key points. 

 

Although CRTs were seen only infrequently before the mid-1980s, their popularity has increased 

dramatically over the last 20 years, particularly in the evaluation of innovations in health care. 

Figure 1, adapted from Bland (2004), shows that the growth in CRTs from the mid-1990s has 

been particularly rapid. Perhaps not surprisingly, the methodological foundation for CRTs has 

been much slower to develop, with the first texts dealing exclusively with this design only 

appearing in the last 10 years (Murray, 1998; Donner and Klar, 2000). A review of more recent 

developments may be found in Campbell et al., (2007). 

 

 Figure 1: Cluster Randomization Trials Published 1981-

2003 

 

Source: Bland J.M. (2004) “Cluster randomised trials in the medical literature: Two bibliometric 

surveys.” BMC Medical Research Methodology; 4: Figure 1, p: 4. 

 



 

 
                

2. Introduction 

Published CRTs are characterized by considerable diversity in the choice of intervention, the unit 

of randomization, and the sampled population. 

 

 Example 1: Published CRTs 

Some examples include the following: 

 

A. 450 villages in Indonesia were randomly assigned to either participate in a Vitamin A 

supplementation scheme or serve as a control. One-year childhood mortality rates were 

compared in the two groups (Sommer et al., 1986). 

 

B. 98 families were randomly assigned to receive either treated nasal tissues or standard 

tissues. 24-week incidence of respiratory illness was compared in the two groups (Farr et 

al., 1988). 

 

C. One member of each pair of 17 matched maternity hospitals in Belarus was randomly 

assigned to receive a breastfeeding promotion strategy, with the other member of the pair 

receiving a control condition based on usual practice (PROBIT trial). The rate of 

breastfeeding at 12 months was compared between the two groups (Kramer et al., 2001). 

 

D. 207 general practices were randomized to receive either a structured group education 

program or standard care offered to patients with newly diagnosed type 2 diabetes. A 

variety of response variables, including biomedical, lifestyle, and psychosocial 

measurements were collected over a one-year follow-up period (Davies et al., 2008). 

 

E. One member of each pair of 11 matched communities was randomly assigned to a city-

wide intervention that promoted the hazards of smoking with the other member serving as 

a control. Five-year smoking cessation rates were compared in the two groups (COMMIT 

Research Group, 1995). 

 

 

 

 



 

 
                

2. Introduction 

In each of the previous examples, the reasons given for randomizing clusters rather than 

individuals were entirely practical in nature. Thus in Example A the authors stated that it was 

not "politically feasible" to administer Vitamin A supplementation to some children in a village 

but not to others. Allocation by village also had the advantage of avoiding the errors that might 

be introduced if study staff were to administer different capsules to different residents. 

 

The desire to improve compliance was likely a motivating factor in Example B, where adherence 

to the intervention could be enhanced if all family members were using the same nasal tissues. 

Logistical considerations were also considerably simplified. 

 

 

 

 

 

 

Experimental contamination would be a serious risk in the breastfeeding trial (Example C) if the 

same physician was to implement different interventions to women in the same clinic. Similar 

concerns motivated the randomization of practices in Example D, while randomization at the 

community level was virtually a necessity in Example E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perhaps the most common reason cited in the literature for adopting a 

cluster randomization is the risk of experimental contamination. 



 

 
                

2. Introduction 

More generally, contamination may be a serious concern in trials of lifestyle modification and 

counseling that are conducted using individual randomization if there is an opportunity for 

control group subjects to mingle with experimental group subjects, and therefore to compare or 

even share the interventions received. 

 

Other reasons to adopt this design arise simply because of administrative convenience. For 

example, having set up a disease screening program in general practice, it could be logistically 

awkward and distracting to staff if a formal randomization scheme were implemented within a 

doctor's office. In this case the CRT design is attractive since it allows physicians and nurses to 

operate as they would normally on a day to day basis. That is, it allows the intervention to be 

given in a way that is more consistent with how the intervention would be given in practice. 

Randomization by practice also removes problems that could arise if some medical professionals 

have ethical qualms about offering an innovative health care program to only some of their 

patients. 

 

Medical settings and communities tend to be the most common randomization units seen in the 

literature. However some CRTs have randomized more unusual clusters, as listed in Table 1. 

 

 Table 1: Examples of Unusual Clusters 
 

Cluster Researcher 

Religious institutions Lasater et al., 1997 

Baseball teams Walsh et al., 1999 

Sex establishments Fontanet et al., 1998 

Student pubs Johnsson and Bergland, 2003 

Boy scout troops Jago et al., 2006 

Calendar weeks Mason et al., 2007 

Grocery stores Hunt et al., 2003 

  



 

 
                

2. Introduction 

 Exercise 1: Cluster Randomized Trial 

 



 

 
                

 

 

 

 

  



 

 
                                                                            

3. Statistical Implications 

Statistical Implications of Cluster Randomization 

 

 

 

 

 

 

This discordance between the unit of randomization and the unit of analysis, an issue not usually 

dealt with in standard statistical texts, creates special methodological challenges at every stage 

of the trial. These challenges arise essentially because individuals in the same cluster tend to 

respond more similarly than individuals in different clusters, i.e. the assumption of statistical 

independence required for the application of standard statistical methods is now violated. Thus 

the outcome measure is now characterized by two separate sources of variation, one within 

clusters and the other between clusters. 

 

Within-cluster dependencies may arise from several different sources: 

 

• Subject self-selection is one important factor, as when female patients choose female 

physicians, or when individuals with respiratory problems choose to live in dry weather 

communities. 

• External factors may also be relevant, as when differences in temperature among 

nurseries are related to infection rates, or when differences in smoking bylaws 

influence the success of smoking cessation programs. 

• Finally, a variety of internal factors may also lead to between-cluster variation, 

particularly when individuals respond similarly to an intervention that is provided in a 

group setting. 

 

 

 

 

 

 

A key feature of cluster randomization trials is that while 

randomization is at the cluster level, statistical analyses are usually 

conducted at the individual level. 



 

 
                

3. Statistical Implications 

Without extensive empirical data, it is very difficult to distinguish among these potential sources 

of between-cluster variation. Regardless of the source, however, such variations must be taken 

into account at all stages of a trial in order to avoid misleading conclusions. Thus failure to do so 

at the design stage could lead to an underpowered study (caused by an elevated type II error), 

while failure to do so at the analysis stage could lead to a false declaration of statistical 

significance (caused by an elevated type I error). 

 

The degree of within-cluster resemblance is typically measured by the magnitude of the 

intracluster correlation coefficient ρ, which may be defined as the standard Pearson product-

moment correlation between any two observations in the same cluster. Provided ρ is non-

negative (an assumption generally made in CRTs), this parameter may be equivalently defined 

as the proportion of overall variance in the trial outcome measure that may be attributed solely 

to variation between clusters. More formally, we may define ρ= σ2B / (σ2B + σ2W), where σ2B 

represents the variance component between clusters and σ2W represents the variance 

component within clusters. 

 

Letting σ2= σ2B + σ2W denote the overall variance of the outcome measure, we may write 

σ2W = σ2(1- ρ), which shows how higher values of ρ lead to smaller values of σ2W for a fixed 

value of σ2, thus enhancing the degree of within-cluster resemblance. 

 

Values of ρ in practice tend to be small and positive. For example, in primary care settings the 

intracluster correlation coefficient has been found to vary from about 0.01 to 0.05 (Campbell et 

al., 2000), while in trials randomizing intact communities it may be close to 0.001. 

Unfortunately these very small values have led some investigators to conclude that their impact 

on the overall study conclusions is likely to be negligible, and therefore can be ignored in the 

statistical analysis (e.g., Skinner et al., 2000). 

 

 

 

 

 

 

 



 

     

3. Statistical Implications 

 

 

 

 

 

Assuming a fixed cluster size m, a more complete measure of this impact is given by the value 

of the "design effect," given by [1+(m-1) ρ]. This expression may also be referred to as the 

variance inflation factor (VIF), since it measures the percentage increase in the estimated 

variance of a mean or proportion that can be solely attributed to clustering effects. Consider, for 

example, a school-based trial where past experience suggests that ρ is likely to be about 0.01. 

If the investigators decide to randomize schools of size m= 100 to each of two intervention 

groups, the value of VIF will be very close to 2.0, implying that the variances of the resulting 

means and proportions could be underestimated by as much as 50% if clustering effects are 

ignored. 

The impact of clustering may also be viewed in terms of its impact on the “effective sample size” 

per cluster, given by m/[1+(m-1) ρ]=m/VIF. Thus when ρ achieves its maximum value of 1.0, 

the total amount of information available from each cluster is no more than that provided by a 

single individual, while at ρ=0 each individual in the trial provides an independent piece of 

information. More generally, it is clear that the total amount of information available from a CRT 

enrolling a specified number of subjects is less than that available from an individually 

randomized trial. This observation is what underlies the classic advice that "randomization by 

cluster accompanied by an analysis appropriate to randomization by individual is an exercise in 

self-deception and should be discouraged” (Cornfield, 1978). It might also be added that 

randomization by cluster accompanied by a sample size assessment appropriate to 

randomization by individual is an exercise in self-deception. 

 

 

 

 

 

Dismissing small ρ values as negligible can be seriously misleading, 

since the impact of clustering depends not only on the magnitude of ρ 

but also on the sizes of the clusters enrolled in the trial. 



 

 
                             

4. Common Designs 

Commonly Adopted Cluster Randomization Designs 

The reduced effective sample size associated with cluster randomization increases the risk of 

chance imbalance between intervention groups on prognostically important baseline 

characteristics. This in turn has strongly influenced investigators to use some form of restricted 

randomization in the formal allocation scheme. As a result the matched-pair design, although 

seen only infrequently in individually randomized trials, has become very popular for CRTs, 

particularly when the total number of available clusters is small. This design requires members 

of a pair (stratum) to be first matched on known risk factors for outcome, with each member 

then randomized to either the intervention or control group. 

 

In the COMMIT trial (Example E above) the participating communities were matched on several 

baseline characteristics, including community size, population density, demographic profile, 

community structure, and geographical proximity. The attraction of such extensive matching is 

the assurance it provided that the groups compared were well balanced on baseline factors 

potentially related to smoking cessation. This assurance would seem to be particularly important 

in a trial involving only 11 matched pairs, since any statistical adjustment for chance imbalance 

at the data analysis stage would necessarily be limited in scope. The PROBIT trial (Example C) 

also used this design, matching maternity hospitals with respect to geographic region, number 

of deliveries per year, and breastfeeding initiation rates at hospital discharge. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

4. Common Designs 

Two matching factors commonly seen in CRTs are geographic location and some measure of 

cluster size, as was the case in both examples C and E. Matching on cluster size may have 

multiple benefits since it: 

 

1. Assures that the total number of individuals in each group is approximately the same 

(an efficiency consideration); and 

2. Controls for the possibility that the number of individuals in a randomization unit 

reflects existing within-cluster dynamics or other factors that are potentially related to 

outcome.  

 

For example in trials conducted in developing countries, larger villages may have better health 

outcomes simply because they are located closer to central health facilities. However other 

factors may also be strong candidates for matching, depending on the main questions of 

interest. For example, failure to control for regional differences in socioeconomic status led to 

interpretational difficulties in a breast cancer screening trial (Alexander et al., 1989). 

 

A design less restrictive than pair-matching is one which allows at least two clusters 

to be assigned to each stratum of an experimental and control group. Thus it can 

essentially be regarded as a replication of the completely randomized design in each of several 

strata. An example is provided by the design employed in the diabetes education trial (Example 

D), where the stratification variables included training status of the physician and type of 

contact with the primary care organization. It was also employed in Example B, where families 

were randomized into one of two treatment groups within each of three strata that were defined 

by household size. 

 

The Vitamin A trial (Example A) is the only one among those listed above that did not involve 

some form of restricted randomization. However the very large number of clusters randomized 

in this landmark study should assure reasonable balance on both known and unknown baseline 

risk factors; therefore matching or stratification would bring only very limited gains in precision 

at the expense of added administrative complexity. 

 

 

 



 

 
                                                                                     

5. Pair-Matching 

When is Pair-matching Worthwhile 

The main attraction of pair-matching on strongly predictive baseline risk factors is the potential 

increase it brings in statistical efficiency and trial power. Dealing first with the case of a 

quantitative outcome measure, let  denote the difference in means for the jth pair 

of clusters, j =1,2,...k. Then the variance of dj is given by 2σ2(1- ρM), where v denotes the 

variance of the outcome measure and the “matching correlation” ρM denotes the Pearson 

product-moment correlation between  and . This simple result shows that the matched-pair 

design will always be more powerful than a completely randomized design provided ρM is 

positive. However this result ignores the difference in degrees of freedom used to test the effect 

of intervention in the two designs. Thus in the completely randomized design the analysis would 

typically take the form of a two-sample t-test with 2(k-1) degrees of freedom, while for a pair-

matched design, it would typically take the form of a paired t-test with only k-1 degrees of 

freedom. 

This discrepancy will have little impact on power in trials enrolling, say, 30 or more matched 

pairs. However logistical and cost considerations dictate that many CRTs, particularly those 

designed to evaluate community-based interventions, are forced to enroll far fewer pairs. The 

question then arises as to what point the gain in efficiency due to pair-matching on important 

baseline risk factors outweighs the loss in efficiency resulting from halving the available degrees 

of freedom. This question was addressed by Martin et al., 1993, who used numerical evaluation 

to conclude that if the number of pairs k is 10 or less, the pair-matched design should only be 

used if the investigators are confident that the value of ρM is at least 0.20. More generally they 

stated "It is unlikely that effective matching would be possible for small studies. Matching may 

be overused as a design tool." This point was also made by LaPrelle et al., 1992, who stated 

that matching on variables poorly related to outcome will "do little but reduce power by shifting 

the unit of analysis from the individual community to the pair of communities." 

 

 

 

 

 



 

 
                

5. Pair-Matching 

Table 2 lists estimated values of ρM (updated from Donner and Klar, 2000, Table 3.2) for a 

variety of recently published matched-pair trials. The values reported here clearly indicate that 

the effectiveness of matching can vary greatly from study to study. For example the HIV 

prevention trial reported by Grosskurth et al., 1995 generated an unusually high matching 

correlation of 0.94, while two other community-based trials actually generated negative 

estimates of ρM. It is also interesting to note that the estimated value of ρM for the COMMIT 

trial is given by 0.21, barely meeting the criterion given by Martin et al., 1993. 

 

 Table 2: Matching Correlations 
 

Source Unit of 

Randomization 

Number 

of Pairs 

Outcome 

Variable 

Matching 

Correlation 

Stanton & 

Clemens (1987) 

Cluster of Families 25 Childhood Diarhea 

Rate 

0.49 

Kidane & Morrow 

(2002) 

Cluster of Villages 12 Childhood of 

Morality 

-0.39 

Thompson et al., 

(1997) 

Physician Practice 

  

13 Levels of Coronary 

Risk Factors 

0.13 

Ray et al., 

(1997) 

Nursing Home 7 Rate of Recurrent 

Falling 

0.63 

Peterson et 

al.(2002) 

School district 20 Prevalence of 

Smoking 

0.34 

Haggerty et al., 

(1994) 

Community 9 Childhood Diarrhea 

Rate 

-0.32 

Grosskurth et 

al., (1995) 

Community 6 HIV Rate 0.94 

The COMMIT 

Research Group 

(1995) 

Community 11 Smoking Quit Rate 0.21 

  



 

 
                

5. Pair-Matching 

Some further insight into these challenges may be gained by realizing that pair-matching is 

most effective when each of the matched pairs constructed correspond to distinct levels of 

baseline risk. Although several published trials have enrolled more than 50 matched pairs, the 

ability to actually construct such a large number of distinct matches is likely to be very 

challenging in practice. This is because there is often only limited knowledge available on the 

factors likely to affect outcome. However, even if such knowledge exists, it may not be possible 

to secure matches for all eligible clusters. 

 

Thus, rather than attempting to construct, for example, 52 matched pairs, it may be more 

practical to adopt a stratified design with, say, 28 strata enrolling four clusters each. The 

resulting assignment of two clusters to each of the intervention and control groups within each 

stratum also has important analytic advantages. These accrue because the assignment of 

multiple clusters to each stratum allows the intracluster correlation coefficient to be directly 

computed using routine methods (e.g., Donner and Klar, 2000, Section 6.4). This is not possible 

in the matched-pair design since the lack of cluster-level replication implies that the natural 

variation between two matched clusters is totally confounded with the effect of intervention. 

Without a direct measure of such between-cluster variation, additional assumptions and a fairly 

large number of matched pairs are needed to estimate ρ (Klar and Donner, 1997). 

 

 Exercise 2: Matching Clusters 

 

 



 

 
                                         

6. Unit of Inference 

Specifying the Unit of Inference 

A key feature of cluster randomization trials is that the unit of inference is often at the individual 

level while randomization is performed at a higher level of subject aggregation. This was the 

case in the hypertension screening trial reported by Bass et al., 1986, which aimed to evaluate 

the impact of screening on cardiovascular outcomes in individual patients. Although medical 

practices were chosen as the unit of randomization, this choice was driven entirely by practical 

considerations, including administrative convenience and the desire to avoid experimental 

contamination. Similar considerations applied in the design of the Vitamin A trial described in 

Example A, where villages were randomized to either the experimental group or a control group. 

However, studies of Vitamin A supplementation have also been carried out using several other 

units of randomization, including individuals, households, neighborhoods, and entire 

communities (West et al., 1991). In each of these trials it was the individual that was the unit of 

inference. 

 

In some trials the unit of randomization and the unit of inference are both defined at the cluster 

level, which removes the need to adjust for clustering effects. 

 

 Example 2: Cluster-Randomized Trials 

Althabe et al., 2004 report on a matched-pair trial aimed at reducing the rate of caesarian 

section deliveries in Latin American maternity hospitals. The intervention in this trial 

required the obstetrician to seek a second opinion from a senior colleague before 

proceeding with the c-section, with outcomes recorded at the hospital level only. 

 

Likewise, Diwan et al., (1995) evaluated a policy of “group detailing” on the prescribing of 

lipid-lowering drugs in a trial randomizing community health centers. A primary endpoint in 

this study was the number of appropriately administered prescriptions per month, with the 

health center serving as the unit of analysis. 

 

In both these trials outcomes on any one individual are not of direct interest. Therefore from the 

perspective of sample size assessment and choice of analysis, the challenges involved are 

essentially the same as those that apply to individually randomized trials. 



 

 
                                         

These distinctions imply it is important for investigators to clearly specify the primary unit of 

inference at the planning stage of their trial. Unfortunately this issue has sometimes been 

referred to as the “unit of analysis problem” (e.g., Whiting-O’Keefe et al., 1984; Divine et al., 

1992). Although intended to emphasize the need for accounting for clustering effects when the 

unit of analysis is at the individual level, this terminology has sometimes been interpreted to 

imply that all CRTs should use cluster level analyses. On the contrary, it is the unit of inference 

that determines the level at which the analysis is conducted. 

 

 Exercise 3: Unit of Inference 

 

 

 

 

 

 

 

 



 

 
                

7. Sample Size Assessment 
The usual approach to sample size estimation for cluster randomization trials is to multiply 

formulas found in standard clinical trial textbooks by an estimate of the variance inflation factor  

VIF = [1+(m-1) ρ]. For example, the number of subjects required to compare two means in a 

completely randomized design that allocates clusters of size m to each of two groups is given by  

 

where  denotes the magnitude of difference to be detected, σ2 denotes the variance of the 

targeted outcome measure, and Za/2,Zβ denote the critical values of the standard normal 

distribution corresponding to a two-sided significance test with error rate α and power 1-β, 

respectively. Equivalently, the required number of clusters per group is given by k=n/m. 

The formula above may also be written as 

Zβ= {km/{[1+(m-1) ρ]2σ2}}½| | – Zα/2 

which more directly shows the increase on trial power (corresponding to increasing values of Zβ) 

obtained by varying the values of k and m. This version of the formula makes it clear that while 

power can be improved indefinitely by increasing the number of clusters randomized k, 

increasing their size m can only increase power to a certain point, as limited by the values of k 

and ρ. Indeed, one can show that even if all clusters enrolled are (theoretically) of infinite size, 

it will be impossible to achieve a power of 80% if the number of randomized clusters is 

insufficiently large. 

 

 

 

 

 

 

 

 

 

 



 

 
                

7. Sample Size Assessment 
Most trials enroll clusters of varying size. It is common in this case to replace m in the previous 

formula by the mean cluster size , which will lead to a slightly underpowered study. However 

if previous data are available on the distribution of cluster sizes, a more accurate formula may 

be applied (Eldridge et al., 2006). Let cv=Sm/  denote the coefficient of variation 

characterizing this distribution, where Sm is the standard deviation of the cluster sizes. Then VIF 

may be replaced in the formula above by  

VIFA=1 + [(cv2 +1) -1] ρ. This adjustment has been shown to have greatest impact when the 

number of clusters is small and/or the value of ρ is high (Guittet et al., 2006). 

 

 Example 3: Calculating Sample Size Assessment 

Consider a family randomized trial designed to evaluate the efficacy of a dietary 

intervention in lowering blood pressure. Data from previous trials performed in a similar 

population indicate that the intracluster correlation coefficient with respect to diastolic blood 

pressure may be taken as 0.20, while the mean and standard deviation of the 

corresponding family size distribution can be reasonably estimated as 2.2 and 0.65, 

respectively (cv=0.30). Previous experience also indicates that the between-subject 

standard deviation of diastolic blood pressure is approximately 10.0. 

 

Assuming it is of interest to detect a mean difference of 4mm Hg with 80% power at the 

two-sided 5% level, the value of VIFA may be obtained as 1+[(0.302+1)2.2-1]0.2 =1.28 

and the number of subjects required in each of two groups by 

 

n= {(1.96+0.84)2 2(102)/42}{1+[(0.302+1)2.2 -1])0.2}=(98.75)(1.28)=127 or about 64 

families per group. 

 

 

 

 

 

 

 



 

 
                

7. Sample Size Assessment 
Methods of sample size estimation that may be used to compare other population parameters of 

interest, such as proportions and incidence rates, follow the same general principles, as 

discussed by (Donner and Klar 2000, chapter 5). For example, to compare two proportions P1 

and P2, the required sample size may be obtained by replacing 2σ2 in the formula for comparing 

two means by P1(1-P1)+P2(1-P2) and μ1-μ2 by P1-P2. However, despite the wide availability of 

such methods, several reviews of cluster randomization trials performed over the last 20 years 

show that far fewer than 50% of such trials report their actual use in practice (Donner et al., 

1990; Simpson et al., 1995; Smith et al., 1997; Varnell et al., 2004; Murray et al., 2008). 

However an exception to this discouraging trend might be emerging in the field of primary care, 

where a recent review by Eldridge et al., 2008 found that 62% of trials reviewed accounted for 

clustering effects in the sample size calculations, a vast improvement compared to results seen 

in previous reviews. 

Values of ρ required for sample size estimation are usually obtained from trials involving the 

same endpoint and a similar unit of randomization. Fortunately investigators now tend to report 

this value fairly frequently. Indeed some researchers have now reported estimates of ρ obtained 

over a range of studies in a particular research area (e.g., Campbell et al., 2000; Murray et al., 

2000; Argarwal et al., 2005; Parker et al., 2005; Gulliford et al., 2005). However, the difficulty 

remains that many such estimates are based on a relatively small number of clusters, and are 

consequently subject to considerable uncertainty. Therefore it is usually advisable for 

investigators to perform a sensitivity analysis in which the impact of different values of ρ on the 

required size of sample can be carefully explored. 

For the matched-pair design, the simplest approach to sample size estimation would be to:  

1. Compute the required number of subjects using standard formulas for the completely 

randomized design; and 

2. Multiply the result by the factor 1- ρM, where ρM is an estimate of the likely size of 

matching correlation.  

If such an estimate is not available from previous data, a conservative approach would be to 

assume that matching is ineffective, i.e. to use the completely randomized formula directly. 



 

 
                

An approach for estimating sample size requirements for the stratified cluster randomization 

design is provided by Donner, 1998. 

 Exercise 4: Strategies for Cluster Trials 

 

 

 

  



 

 
                

8. Factors Influencing Power 

 

 

 

 

 

 

This advice likely carries even more weight for CRTs when one considers some of the unique 

problems that may arise. 

 

• Entire clusters of subjects may be lost to follow-up if a physician, mayor, or school 

administrator withdraws their cooperation partway through a trial. 

• A further problem is that many interventions in CRTs are applied on a group basis with 

little or no attention given to individual study participants, adding to the risk of 

subject withdrawal or inadequate compliance. 

• Overoptimistic expectations concerning the expected effect size might also lead to 

an underpowered trial, particularly since the lengthy developmental phase that usually 

precedes individually randomized trials is frequently absent in the context of CRTs. 

 

Beginning with the well-known trials intended to reduce the risk of cardiovascular disease that 

were designed in the 1970s (e.g., Farquhar et al., 1977; Tuomilehto et al., 1980; Jacobs et al., 

1986) many CRTs can be characterized as prevention trials. Such trials, also exemplified by 

Examples A and B, may be particularly susceptible to low power since they tend to recruit 

relatively healthy, heterogeneous populations of subjects who may exhibit lower than expected 

compliance levels, and who also must be followed up for lengthy periods of time in order to 

detect important reductions in (relatively low) event rates. Moreover, as pointed out by Meinert, 

2008, data from previous relevant trials may not be easily available at the planning stages, 

making it difficult to anticipate the event rate in the control group. 

 

There are a number of steps that may be taken to help improve the power of CRTs. 

 

• One strategy would be to develop cluster-level eligibility criteria that by definition 

will serve to reduce between-cluster variability, for example by imposing relatively 

narrow geographical restrictions at the recruiting stage. Although this strategy may 

Investigators are often advised in the planning stages of a study to err 

on the conservative side in estimating the size of sample needed to 

achieve adequate statistical power. 



 

 
                

lead to some loss of generalizability (external validity), the resulting increase in power 

can arguably make this an acceptable trade-off. 

• It is also important to ensure at the design stage of the trial that all important 

prognostic variables are measured. The baseline version of a primary outcome 

measure is a particularly powerful prognostic variable, and may be incorporated into 

the analysis using either a change score approach or by including it as a covariate in a 

multivariable model. The availability of this value also allows the opportunity for the 

investigators to re-evaluate key sample size parameters, such as the standard 

deviation and the ICC. If obtained as part of an overall baseline survey, the resulting 

information may also be helpful in identifying potential stratification factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

8. Factors Influencing Power 
There are also some strategies that are occasionally seen in the literature, but cannot be 

recommended. 

• As we have seen in Section 3, the impact of clustering depends on the value of  

VIF = [1+(m-1) ρ] rather than solely on the parameter ρ. Thus it would be a 

mistake to ignore clustering effects simply because the observed value of ρ is 

close to zero. Similarly, an attempt to rule out clustering on the basis of a 

significance test would also be misguided, since the power of detecting small but 

important departures from the null hypothesis Ho: ρ =0 will almost always be 

abysmally low. 

• Some authors have pointed out that power can be considerably increased if the value 

of ρ is assumed to be known from external sources (Murray, 1997). For example, in 

testing the equality of two means, a two-sample t-test may be performed with M-2 

degrees of freedom, where M is the total number of individuals in the study (Blair and 

Higgins, 1986). However, this strategy carries a serious risk of bias due to 

possible misspecification of ρ, and therefore should be avoided unless the data 

available from previous trials is both extensive and highly representative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

9. Cluster Level Replication 

Some of the earlier community intervention trials addressing cardiovascular risk factors enrolled 

only two clusters, one allocated to the experimental intervention group and the other to a 

control (e.g., Turpeinen et al., 1979), with justification resting largely on cost and logistical 

considerations. This two-cluster design, which can still be seen in the literature today, may be 

very useful for exploratory purposes as a prelude to a more definitive trial that adopts formal 

power considerations. 

 

Yet the ability to secure a valid estimate of ρ depends on the ability to obtain an accurate 

estimate of such variation, and hence the design itself is invalid. It is only under the unlikely 

(and untestable) assumption that ρ is zero that a valid test of the intervention effect can be 

conducted. Otherwise the results are subject to the same problems of interpretation that would 

arise in an individually randomized trial that assigns exactly one patient to each of two 

treatments. Taking a series of repeated measures in each of the two clusters improves the value 

of this design as an exploratory tool, but does not remove the basic problem. 

 

 

 

 

 

 

This is not to say that trials randomizing, say, three or four clusters to each group should be 

encouraged, since, although technically valid, they will almost surely lack the ability to detect 

important intervention effects. It is only by adopting a formal probabilistic approach to sample 

size estimation (discussed earlier) that this problem can be avoided. 

 

 

 

 

 

 

 

 

The main issue here is not power but rather the threat to trial validity, 

since the effect of intervention is inevitably confounded with the 

natural variation that exists between the two clusters. 



 

 
                

10. CRTs and Informed Consent 

Cluster Randomization Trials and the Need to Obtain Informed 

Consent 

The need to secure informed consent is well established in individually randomized trials, as 

governed by principles dating back to the time of Hippocrates. 

 

 

 

 

 

 

This is partly due to the great diversity that can be found in the size and nature of units that can 

be randomized (e.g., families, hospitals, cities) and partly because consent can be obtained, at 

least theoretically, at multiple levels. 

 

• At the first level, consent is typically obtained from a “gate-keeper” such as a 

physician, mayor, or school principal, to allow their cluster to be randomized. 

• At the community level this approach could be implemented in accordance with 

guidelines published by the World Health Organization and the Council for 

International Organizations of Medical Sciences. 

 

These CIOMS guidelines suggest that the gate-keeper should sign a consent form clearly setting 

out the steps that will be taken for safeguarding the interests of the study participants. The 

implication here is that such a contract will adequately substitute for the need to obtain 

informed consent on an individual basis, which from a practical perspective will often be 

extremely difficult, if not impossible. This approach is also consistent with what has been 

recommended for “cluster-cluster” trials, in which the intervention is administered to the entire 

cluster, as in the case of a media message, rather than on a one-to-one basis to individual 

subjects (Edwards et al., 1999). In the latter case (“cluster-individual” trials) both the need and 

ability to obtain informed consent at the individual level are arguably much greater than when 

the intervention is “indivisible” at this level. However if the parent cluster has already been 

randomized in a cluster-individual trial, the limitation remains that one can only ask an 

individual subject at this stage to consent to an intervention that has been previously assigned. 

Norms regarding the need to obtain informed consent in trials 

randomizing intact social units have yet to receive full acceptance. 



 

 
                

 

Given the complexity of the ethical issues raised by this design, it would seem reasonable, at 

least as a first step, for researchers to more thoroughly report the steps taken to obtain 

informed consent in their own trial. However an ultimate goal would be to develop broadly 

acceptable norms that can be applied to a range of ethical issues that have yet to be adequately 

explored in the context of CRTs. Further discussion may be found in Klar and Donner, 2007a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

11. Cluster vs. Individual Level Analysis 

Cluster Level versus Individual Level Analysis 

This chapter has discussed the importance of identifying the unit of inference at an early stage 

of a trial, since this choice plays an important role in determining the unit of analysis. Thus 

when inferences are directed at the cluster level, as in the trial reported by Althabe et al., 2004, 

analyses are also invariably conducted at the cluster level. 

 

But in the more frequently arising case where the unit of inference is the individual, analyses 

can be conducted at either level. The simplest approach in this case would be to collapse the 

data in each cluster and then to construct a relevant summary measure, such as a mean, slope, 

or other cluster level statistic. This essentially removes the need to adjust for clustering effects, 

since randomization assures that the resulting summary measures are statistically independent. 

It is also interesting to note that in the case of a quantitative outcome and a fixed cluster size a 

cluster level analysis is fully as efficient as an individual level analysis (e.g., Klar and Donner, 

2007b). This can be most easily seen by verifying that an analysis of variance performed on the 

individual subject responses is algebraically equivalent to a two-sample t-test performed on the 

cluster means. Thus the statement sometimes seen in the literature which characterizes a 

cluster level analysis as fully efficient only when ρ =1 is incorrect. 

 

However for variable sized clusters, an analysis at the cluster level that is not properly weighted 

to take into account the intracluster correlation as well as the cluster sizes will indeed be less 

efficient than an individual level analysis that takes into account both these factors. 

Nevertheless the relative simplicity of a cluster level analysis still remains an advantage, albeit 

with some loss of efficiency and an inability to adjust for individual level risk factors. 

 

 

 

 

 

 

 

 

 



 

 
                

12. Perils of Subsampling 

The Perils of Cluster Subsampling 

As alluded to earlier in this chapter, increasing the number of clusters enrolled in a trial 

has a greater impact on statistical power than increasing the size of the clusters 

randomized. Moreover the benefit that may be obtained from increasing the number of 

participants per cluster is inversely proportional to the value of the intracluster correlation 

coefficient ρ, with the largest gains in power achieved when the number of participants sampled 

(subsample size) increases from 1 to 1/ ρ (Donner and Klar, 2004). Thus for trials randomizing 

entire communities, where values of ρ may be as low as 0.001, very little increase in power will 

be obtained by sampling more than 1000 subjects from each community. On the other hand, if 

ρ is about 0.01, as in school-based trials or trials randomizing medical practices, any gain in 

power diminishes rapidly after 100 students per cluster are enrolled. 

 

Nonetheless, it is not uncommon for an investigator to administer an intervention to all 

members of a cluster even though the resulting gains in statistical power are minimal. This is 

often because the extra costs and logistical difficulties involved may not be considered onerous. 

However in some cases, such as in the COMMIT trial (Example E), it may be felt that the entire 

cluster (community), not just those individuals directly impacted, might benefit as a result of the 

synergy and interaction that takes place among cluster members. Some investigators might also 

have ethical qualms about delivering a new intervention to some but not all members of a 

cluster. 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

 Exercise 5: Uses of Subsampling 

 

 

 

  



 

 
                

12. Perils of Subsampling 

 

 

 

 

 

 

Detect and Treat Bias: in many trials subsampling is done in rather opportunistic fashion, as 

when staff personnel attempt over time to identify eligible patients in a trial randomizing 

medical practices. Since such recruitment is almost inevitably done by staff who are unblinded 

to intervention status, a serious risk of selection bias may arise if personnel in the experimental 

arm of the trial are more motivated, enthusiastic, or better trained in their recruitment efforts 

than staff in the control arm (Torgerson, 2001; Farrin et al., 2005). An indication that such bias 

has occurred, sometimes referred to as ‘detect and treat bias,’ would be that a much larger 

number of patients have been recruited in the experimental group than in the control group. 

 

Of greater concern, however, is the possibility that the characteristics of the patients in the two 

groups may differ, as, for example, when sicker patients have been easier to identify in the 

experimental group due to greater diligence in recruiting them. In this case, all the benefits of 

randomization will be subverted. 

 

• Avoiding bias: in some trials, such as those randomizing worksites, all eligible cluster 

members may be identified prior to randomization, which is the most straigthtfoward 

way of avoiding this difficulty. Otherwise it may be advisable for someone not directly 

connected to the trial to take primary responsibility for subject recruitment, ideally in 

blinded fashion. 

 

Motivation of subjects: in the previous example, the selection bias due to differential 

subsampling can be largely attributable to greater diligence on the part of the 

investigator team in seeking out eligible subjects. However selection bias may also 

arise because subjects in one of the two groups are more motivated to participate 

than subjects in the other group, resulting in differential levels of consent. For 

example consider a school-based trial in which the aim of the intervention is to reduce 

the dating violence experienced by high school students. It may seem reasonable to 

The protection that randomization offers CRTs that adopt a 

subsampling strategy can only be assured if the subjects selected can 

be regarded as a random sample of all cluster members. 



 

 
                

restrict recruitment in this study to students who have dating experience. However 

recruitment efforts in control schools might be less intensive or adept than in 

intervention schools because control group teachers seeking consent may be less 

familiar with the details of the administered program. As a consequence, control 

subjects who ultimately do provide consent may be particularly motivated to 

participate, perhaps because of their greater sensitivity to issues surrounding dating 

violence. This in turn may lead to evaluation bias if the characteristics of students 

recruited in the two groups differ on factors (some easily measurable and others less 

so) that are related to the trial outcome. 

 

• Avoiding bias: therefore a preferred approach in this case would be to conduct an 

intent-to-treat analysis in which all students in a school are requested to report 

whether they have experienced dating violence. A secondary analysis could then be 

performed which includes only students who have dating experience. If the overall 

conclusions from the two analyses do not agree, then the intent-to-treat analysis must 

be recognized as the only one free from selection bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

13. Other Perils 

Is fear of contamination in individually randomized trials overrated? 

 

It was mentioned in the beginning of this chapter that the most common reason cited in the 

literature for adopting a cluster randomization design is 

 

the risk of experimental contamination that might arise under individual randomization. 

 

We now examine this issue in more detail. Suppose for illustrative purposes that an extreme 

form of contamination occurs under individual randomization where a proportion R of control 

group subjects “cross over” and actually take up the experimental invention. Then if we assume 

that these subjects will experience the same event rate as the experimental group subjects, the 

difference in event rates that can be detected will be reduced by a factor of 1-R. 

 

For example, suppose the investigators enroll enough subjects in the trial to detect a 20 

percentage point difference in event rates at a specified probability level. If a proportion R=0.30 

of control group subjects are now expected to assume the same event rate as subjects in the 

experimental group, the trial must be redesigned to detect a difference of 0.70(20)=14 

percentage points. However to detect this smaller effect size it can be easily shown (Torgerson, 

2001) that the original sample size must be inflated under individual randomization by a factor 

1/(1-R)2 =1/(.70)2=2.04. The investigators may believe that this contamination effect can be 

avoided by alternatively choosing a cluster randomization design. However the variance inflation 

factor associated with clustering may be much larger than this. 

 

• Adjusting the trial size by taking into account the anticipated contamination effect may 

well be the preferred option, at least in terms of required sample size. 

• Nonetheless it must also be recognized that under individual randomization the effect 

size estimated by the trial data will be attenuated by the resulting contamination. 

• Thus if the main aim of the investigators is to estimate the “uncontaminated” effect 

size, the cluster randomization design may still be preferable. 

 

 

 

 



 

 
                

13. Other Perils 

Clustering effects in individually randomized trials 

The need for accounting for within-cluster dependencies in testing the effect of intervention in 

trials randomizing intact social units is now widely recognized. It is less recognized that 

clustering effects may also arise in trials which are individually randomized but in which the 

interventions are ‘cluster-administered.” This would include, for example, interventions involving 

group therapy or counseling as well as those that could be delivered individually, but may be 

delivered on a group basis for practical reasons, as in the case of exercise classes. The source of 

these effects could well be similar to those arising in cluster randomization trials, such 

interactions among cluster members or the effect of having a common leader. 

 

• Failure to account for them may similarly lead to underpowered comparisons at the 

design stage of the study or an elevated type I error at the analysis stage. Further 

discussion and practical recommendations may be found in Baldwin et al., 2005 and 

Roberts and Roberts, 2005. 

 

Misconceptions concerning the ecological fallacy 

The ecological fallacy (Morgenstern, 1998) is well-known as a possible source of 

misinterpretation in epidemiological studies when correlations calculated at the cluster level are 

also assumed to apply at the individual level. For example, consider the ecological correlation 

between the percentage of individuals in a community using sunscreen lotion (x) and the 

percentage of elderly individuals residing in that community (y). It is well-known that the 

existence of a positive correlation does not imply that elderly individuals tend to use more 

sunscreen lotion than younger individuals; rather it could be that younger people in 

communities with predominantly elderly individuals are the ones using sunscreen lotion. 

 

The ecological fallacy arises here because communities usually contain both types of individuals, 

those who use sunscreen and those who are elderly. However it does not apply when standard 

analyses are used to evaluate the effect of intervention in a CRT. This can be seen by supposing 

that the variable y in the example above is replaced by an indicator variable z representing 

treatment assignment (1=intervention, 0=control), where the aim of the intervention is to 

promote the use of sunscreen protection. 

 



 

 
                

• In accordance with the well-known “intent-to-treat” principle, every individual in a 

community is counted at the analysis stage in the treatment group to which they were 

assigned, thus assuring that communities will be homogeneous with respect to the 

variable z. 

• More generally, and contrary to what has sometimes been implied in the literature 

(e.g., Kreft, 1998), concern for the ecological fallacy in this case is often misplaced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

14. Analyses at the Individual Level

Incorporating Clustering Effects into Standard Statistical Analyses 

Earlier, this chapter reviewed how the impact of clustering on sample size requirements can be 

accounted for by incorporating the value of the “variance inflation factor” (VIF) into standard 

sample size formulas. A similar approach may be taken to adjusting for cluster effects when 

analyses are conducted at the individual level, with sample estimates of the VIF now 

incorporated into standard test statistics. Attention in this section will be focused mainly on 

binary outcome data, which tend to arise more frequently in cluster randomization trials than 

continuous, count and time-to-event outcomes. Detailed discussion of statistical methods that 

can be applied to a variety of outcome variables arising in CRTs may be found in Donner and 

Klar, 2000, Chapters 6-8. 

 Example 4: Analyses at the Individual Level 

To illustrate one such approach, consider a trial evaluating the effect of tailored general 

practice guidelines on the proportion of patients with benign prostatic hyperplasia (BPH) 

that remained under specialist care at 12 months post-randomization (Mollison et al., 

2000). Of main interest here is a comparison of event rates observed on 150 patients 

contributed by 23 experimental group practices to event rates observed on 142 patients 

contributed by 26 control group practices. Median cluster sizes in this completely 

randomized trial were 6 and 3.5 in the experimental and control groups, respectively, a 

difference that can reasonably be attributed to chance. 

66 (44%) patients in the experimental group were still under specialist care at 12 months 

as compared to 77 (54.2%) patients in the control group. Application of the standard 

Pearson chi-square test with one degree of freedom to these data yields x2
p =3.05(p=.08), 

indicating a difference that is statistically significant at the 10% level. However this test fails 

to account for the similarity of responses (clustering) among patients belonging to the same 

practice, and therefore overstates the true level of significance. We therefore compute the 

“adjusted chi-square statistic” x2
A, obtained by dividing x2

p by an appropriate estimate of 

VIF (Donner and Klar, 1994). Application of this procedure, based on an estimated value 

of ρ given by 0.077, yields x2
A =1.684(p=.19, one degree of freedom), a result no longer 

statistically significant at any conventional level. Algebraic formulas for all results presented 

in this example are given in the Appendix.  



 

 
                

14. Analyses at the Individual Level 
 

 

 

 

 

 

 

The previous example is typical of how standard test statistics can be extended in 

straightforward fashion to take into account clustering effects. A similar extension of the well-

known Mantel-Haenszel (MH) statistic for combining several 2X2 contingency tables (Mantel and 

Haenszel, 1959) can be applied to test the effect of intervention in a stratified cluster 

randomization design (Donner, 1998). Analogous to the relationship between x2
A and x2

P, the 

adjusted Mantel-Haenszel statistic (MHA) reduces to MH when divided by an appropriate 

estimate of the VIF. 

It was mentioned earlier that the confounding of the effect of intervention with the natural 

variation between two clusters in a matched pair precludes the direct computation of the 

relevant intracluster correlation coefficient. Thus matched-pair designs are invariably analyzed 

using cluster level analyses, such as the standard paired t-test as applied to the observed 

differences in cluster-level event rates. Although this procedure is very robust to departures 

from the underlying assumptions of normality and homogeneity of variance (see Donner and 

Klar, 1996), some investigators have chosen to avoid the need to make this assumption by 

applying a nonparametric analogue of the t-test. For example, in the COMMIT trial, the 

investigators applied a one-sample randomization test (also known as a permutation test) to 

compare smoking quit rates in the eleven matched pairs of communities. 

 

 

 

 

It is important to note that this procedure does not require that the 

value of ρ is constant across all pairs of observations that may be 

constructed within clusters (“the common correlation” assumption). 

Only the weaker assumption that the average value of ρ remains 

constant across clusters is required to ensure the validity of x2
A. 



 

 
                

14. Analyses at the Individual Level 

Covariate Adjustment 

Random assignment of clusters assures that baseline variables measured at both the cluster and 

individual levels should be reasonably well balanced. Yet chance imbalance at either or both 

levels can still arise, particularly when the number of clusters is small. 

If imbalance regarded as substantively important arises on baseline variables that are highly 

predictive of outcome, they must be controlled for either at the design stage through matching 

or stratification or, alternatively, at the analysis stage. A detailed discussion of methods for 

covariate adjustment in cluster randomization trials is beyond the scope of this chapter. 

However for dichotomous outcomes they largely take the form of extensions of multiple logistic 

regression, a well-known multivariable procedure widely used in the analysis of data arising 

from individually randomized clinical trials. 

• The extension adopted most frequently is known as generalized estimating 

equations (GEE), a procedure which allows adjustment for the joint effects of cluster 

level and individual level risk factors without the requirement of parametric 

assumptions. This procedure, developed by Liang and Zeger (1986), is readily 

available in standard software packages such as SAS and STATA. Unfortunately its 

validity can only be assured if the number of clusters randomized is fairly large, at 

least 10 or more in each group (e.g., Feng et al., 1996; Pan and Wall, 2002). 

• Another widely used extension of logistic regression assumes that the logit 

transformation of an event rate p, defined as log[p/(1-p)], follows a normal 

distribution, with the method of maximum likelihood used for parameter estimation. 

However this approach also requires a reasonably large number of clusters to ensure 

its validity. 

A highly accessible discussion of the advantages and disadvantages of these two different 

extensions of logistic regression is given by Bellamy et al., 2000. 

 

 

 

  



 

 
                

15. Interim Analyses 

The Role of Interim Analyses 

Interim analyses are now a standard feature of individually randomized trials, particularly those 

with long-term follow-up and life-threatening outcomes. Although such analyses may have 

several objectives, the primary one is usually based on the need to detect unexpected 

differences in treatment effectiveness that may warrant early termination of subject accrual and 

follow-up. 

 

 

 

 

 

 

 

 

 

A number of reasons may be responsible for this, including: 

 

• The relatively long lag time needed for an intervention to “settle in”; 

• The perception that the intervention in question is fairly benign, as in the case of 

lifestyle modification or behavioral trials; or 

• The likely belief that the assumptions underlying the stopping rules most frequently 

adopted for individually randomized trials, such as that developed by O'Brien and 

Fleming, 1979, may not hold in trials randomizing clusters.  

 

But for trials in which cluster accrual occurs gradually over time it has now been shown (Zou et 

al., 2005) that such rules may in fact be safely applied under very general conditions. Of course, 

as in the case of individually randomized trials, it is vitally important that the treatment-related 

results be transmitted only to members of an independent data monitoring committee, and 

otherwise kept confidential. 

 

A secondary aim of an interim analysis may be to reassess the values of some of the parameters 

used to estimate the required trial size. In cluster randomization trials, such parameters may 

There is no reason in principle that these factors should fail to apply to 

trials randomizing intact social units rather than individuals, as in, for 

example, nutritional supplementation trials having subject morbidity 

and mortality as the primary response variables. Yet formally planned 

interim analyses have not tended to play an important role in such 

trials. 



 

 
                

not only include the standard deviation (for continuous outcomes) or the event rate in the 

control group (for dichotomous outcomes), but also the intracluster correlation coefficient. An 

example of sample size re-assessment for a cluster randomization trial is provided by Lake et 

al., 2002. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 
                

16. Cohort vs. Cross-sectional Designs 

The earlier discussion on analysis at the individual level is most pertinent to cohort designs, 

where each individual in the study is followed up over time. However in studies enrolling very 

large clusters, such as entire communities, such detailed follow-up may not be possible. 

Considerable discussion has therefore arisen in the community intervention trial literature as to 

the relative advantages of this design to a cross-sectional design, in which different groups of 

individuals are independently sampled and assessed at each of several time periods. 

 

It is acknowledged that the cohort design is theoretically more powerful from a statistical 

perspective, since it allows an analysis that controls for individual baseline values, thus allowing 

the effect of intervention to be estimated with more precision. 

 

However, as shown by Feldman and McKinlay (1994), this advantage must be weighed 

against the risk of loss to follow-up that arises in any longitudinal study. The “worst-

case scenario” arises when the loss to follow-up is differential across intervention groups, since 

then the final estimate of intervention effect may be subject to substantial bias. 

 

Even when subject attrition is unrelated to treatment assignment, a large loss to follow-up rate 

may result in reduced efficiency relative to a cross-sectional design. Other disadvantages of the 

cohort design, as reviewed by Atienza and King (2002), include: 

 

• A loss of representativeness of the target population related to the aging of the 

cohort; and 

• "Learning effects” that may result from repeated assessments on the same individual. 

 

These considerations suggest that a cohort design is most effective when: 

 

• Participating clusters are of relatively small size, 

• The study population is relatively stable and compliant; and 

• Follow-up times are not lengthy.  

 

It follows that for studies enrolling large communities, where complete follow-up is rarely 

feasible, cross-sectional designs have often been preferred, as in the early trials of 



 

 
                

cardiovascular health referred to in this chapter.They also may be the inevitable choice for any 

intervention that is evaluated at the cluster level only. 

 

To avoid the analytic limitations of cross-sectional designs, an approach adopted by some 

investigators has been to augment this design by subsampling a cohort consisting of a relatively 

small number of subjects in each community.  For example the COMMIT investigators used 

randomly selected cohorts of heavy and light-to-moderate smokers, respectively, as one means 

of evaluating the effect of their community-based smoking cessation intervention. 

 

From a conceptual perspective, the choice of design must also be considered in light of how the 

primary question of scientific interest is posed.  Thus if interest focuses mainly on change at the 

broader community level, cross-sectional designs may be the more natural choice while cohort 

designs may be more natural if change at the individual level is of most interest.  Methods of 

analysis that are particularly suited to cross-sectional designs have been discussed by Nixon and 

Thompson (2003) and Ukoumunne and Thompson (2001) for the case of binary outcomes, and 

by Koepsell et al., (1991) and Murray (2001) for the case of continuous outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

17. Reporting 

Reporting of Cluster Randomization Trials 

The well-known CONSORT statement for individually randomized trials (Begg et al., 1996; 

Moher et al., 2001; Altman et al., 2001) has now been extended to cluster randomized trials 

(Campbell et al., 2004). The principle features of this extension include recommendations to: 

 

• Provide the rationale for adopting a cluster design; 

• Specify how the effects of clustering were incorporated into the sample size calculation 

and the statistical analysis; and 

• Present a chart showing the flow of both clusters and individuals through the trial.  

 

An earlier set of guidelines were provided by Donner and Klar, 2000, Chapter 9. Aside from 

reporting standards that are unique to CRTs, there are some that have become routinely 

accepted for individually randomized trials, but now need to be reconsidered. This includes the 

presentation of baseline characteristics, which for CRTs should be provided separately for cluster 

level characteristics (e.g., geographic area, cluster size) and individual level characteristics 

(e.g., age, gender). The presentation of baseline cluster level characteristics is straightforward, 

since the clusters assigned to each group are independently distributed. 

 

Some special caution is required when comparing individual level baseline characteristics. 

 

• Although it is now recognized that the use of significance tests for this purpose is 

always a logically flawed procedure (e.g., Senn, 1994), this practice can be 

particularly misleading when applied to CRTs. This is because the test procedures 

typically used, such as t-tests and chi-square tests, may fail to account for the 

clustering effects that apply at baseline as well as at outcome. The resulting p-values 

will be biased downwards, potentially leading to an ill-advised decision to adjust for 

the characteristic (covariate) in question in the statistical analysis. 

• Standard deviations for continuous variables that are used for descriptive purposes will 

also be biased downwards by clustering effects, but only slightly unless the overall 

sample size is small and the intracluster correlation coefficient is large (White et al., 

2005), conditions unlikely to apply in most CRTs. 



 

 
                

• Finally it must be recognized that the effective sample size for the variables involved is 

no longer the number of individuals n per treatment group but rather n/VIF. Failure to 

recognize this makes it difficult to accurately compare the amount of information 

provided by different trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

18. Appendix 
Let mij denote the size of the jth cluster assigned to the ith group, i=1,2; j=1,2...k, with 

denoting the total number of subjects in group i, and denoting the corresponding 

value of the overall event rate in this group. Then the standard Pearson chi-square statistic with 

one degree of freedom may be written as  

Appropriate adjustment of  for clustering effects requires an estimate of the underlying 

intracluster correlation coefficient ρ, which, under the null hypothesis of no intervention effect, 

may be assumed to be constant across intervention groups. The required estimate may be 

obtained by pooling the observations in both groups and then applying the “analysis of variance 

approach” described by Donner and Klar (1994). Let MSC and MSW denote the pooled mean 

square errors between and within groups, respectively. Then defining ,  

We obtain , where 

 

 

and  

The value of  is then adjusted by applying a correction factor which depends on both and 

the values of the mij.  Letting , the adjusted chi-square statistic with one degree 

of freedom is given by  .  At is it clear that reduces to 

while if all clusters are of the same size m, it reduces to . 

 



 

 
                

This approach may also be used to construct an approximate confidence interval about 

. Using the notation above, a two sided 95% confidence interval is given by 

.   At this expression reduces to the 

standard confidence interval about a difference between two proportions. However the 

assumption of a common intracluster correlation coefficient, although guaranteed under the null 

hypothesis of no intervention effect, may not be appropriate for confidence interval construction. 

In this case separate estimates of ρ may be used in computing the variance inflation factors C1 

and C2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
                

19. Summary 

The purpose of this chapter is to provide a basic understanding of methodological issues that 

must be addressed when investigators decide to randomize intact social units, or clusters of 

individuals, to different intervention groups. Foremost among these is the justification for 

randomizing clusters rather than individuals given the loss of statistical efficiency that inevitably 

arises. The impact of cluster randomization on sample size estimation, the choice of an 

experimental design, and the approach to the statistical analysis are discussed in detail. 

Consideration is also given to the unique ethical issues that arise when clusters are selected as 

the unit of randomization. The chapter closes with suggested guidelines for the reporting of trial 

results. 
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